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Abstract.   A study on learning and decision-making methods was conducted by
comparing an orthogonal methodology of manipulating data versus that of a majority-
voting procedure. The latter method has recently become popular in the literature
involving applications such as pattern recognition.  To evaluate the differences between
the proposed methods, data from a multidimensional paradigm involving decision-
making and learning are analyzed. A number of basic concepts from estimation and
information theory are first discussed to understand both the motivation and the
underlining issues involved in conducting this study.
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I. INTRODUCTION

   Learning and decision-making are processes
that adapt and are highly multidimensional
[1].  Also when developing autonomous
systems, there is considerable interest in
adaptability as an intelligent means of
modifying behavior as new data are acquired.
Much like learning, decision-making to
improve the quality of information has similar
and related issues to designing intelligence in
autonomous systems [1,2,3,4].   In a recent
study [5], it has been demonstrated that it is
possible to build a decision-making scheme
from a “bottoms up” approach starting with a
vector of orthogonal classifiers. Alternatively,
a different approach involving classification
and learning procedures occurs in pattern
recognition schemes [6] where a scalar
measure (majority-voting) can be compared to
the hyperplane method as discussed in [5].
This paper will cover the basics of a decision-
making process and how it can be generalized
to learning by extrapolation of the techniques
presented here. Both methods are highly
adaptable, which is of interest in a number of
special applications, and, in particular, for
intelligent control methods involving the
design of autonomy.  First it is important to
discuss some well-known results from

estimation and information theory which
motivate the orthogonal approach discussed
here.
    In estimation theory (e.g. in Kalman
filtering) the concept of  orthogonal
projection is well-known.  An optimal
estimator is recognized as having its error
vector orthogonal to the direction of the
measurement signal.  Another interpretation
of this result is that the residuals (difference
between the data and the estimator) should
contain zero information (the residuals are
random) and are not correlated with the state
estimate [7].  Hence one can view learning as
a process of making the residuals white
(containing no information) and the error of a
state vector remaining orthogonal to the
measurement set. Thus learning can proceed,
as new data are received, by updating the
estimator, accordingly, so that the resulting
residuals still contain minimal information.
This is also consistent with information
theory concepts in which the greatest
information is contained in the most unlikely
event and there is little new information in an
expected event [8].
     When multiple channels of data tell the
observer their potential classification of a
particular object, the decision can be
predicated on the orthogonal approach or



possibly on the majority vote of scalar
classifiers. There are two distinct points of
view:
(1) The first and traditional method (vector) is
that an optimal estimator can be built which
employs an orthogonal method described
above. As new data arrive, the estimator is
adapted so that the resulting error vector
remains orthogonal to the measurement set.
This methodology is not necessarily a scalar
process and hyperplanes can describe the
estimator when any number (n) of channels of
data are available.
(2) The second possibility (scalar) is that a
majority-voting scheme could be employed.
This differs from the method (1) because of n
(initially assumed to be odd) channels of data
could each individually select (binary
decision rule) their choice of a decision on the
classification of an object. The overall
decision is then based on the majority of the
decisions. This second method is a scalar
mapping; the first method involves a
hyperplane or vector methodology. It has
been shown mathematically [6] that the
second method can be as effective or better
than the first method in certain situations.
This paper will examine the relevant details
why learning or decision-making may benefit
from a majority viewpoint in contrast to an
orthogonal perspective. First the basics of
each of these processes are reviewed.

II. Examples Considered
    To better understand the relevant issues, the
basics are reviewed utilizing well-known
results involving information theory, Kalman
Filtering, and orthogonal pattern recognition
procedures.  The goal is to compare both
across and within different methodologies to
see similarities and differences on why certain
methods may help adapt in learning and why
a majority-voting scheme has some merit. The
first example arises from the basic
mathematical discussion of orthogonal
projection.

2.1 Optimality and Orthogonal Projection
    To provide the background to this
approach, it is first instructive to show the
fundamental relationship between optimality
and orthogonal projection.  Given a linear
space X with inner product  <x, y>  defined
for any two elements using the L2 norm:
                  || x || = < x,x > 1/2                          (1)
A fundamental theorem is borrowed from the
classical literature in this area [9].
Theorem 1:  || ˆ  x y−  || is a minimum for all
y ε M (the measurement set) , i.e.
   ||   x y− ||  ≥    || ˆ  x y−  ||     ∀  y ε M        (2)
if and only if ( ˆ  x y− ) is orthogonal to all y ε
M, i.e.:
         < ˆ  x y−  , y > = 0    ∀  y ε M              (3)
Proof:
First assume equation (3) is valid, then for
any y ε M,
 ||   x y−   ||2  =  || ( ˆ  x y− ) + ( ˆ   y y− ) ||2      (4)
 = || ˆx y− ||2 + 2<( ˆx y− ), ŷ y− >+ || ŷ y− ||2  (5)
where each ( ˆ  y y− ) ε M. But from equation
(3), the middle term of (5) vanishes yielding:
 ||   x y−  ||2 = ||( ˆ  x y− )||2 + || ( ˆ   y y− ) ||2     (6)
                      >     || ( ˆ  x y− ) ||2                    (7)
with equality if and only if   ˆ  y y= .  To
complete the proof, (assume (3) is not valid)
and that ŷ  minimizes ||   x y−   ||2  for all  y ε
M,  hence there exists some y1 ε M  such that:
         < ˆ  x y− , y1  >  =  α  ≠  0                    (8)
Then:        || 1ˆ   x y yβ− −   ||2  =
     || ( ˆ  x y− ) ||2  2 2

12   +  || y ||α β β−           (9)
Thus it appears that by appropriate choice of
β   it is possible to make the combined total
of the last two terms of (9)  negative, thus
contradicting the minimality of ŷ . Hence
such an element y1 of M cannot exist and this
shows the optimality criterion.
Remark:
The relationship between optimality and
orthogonality is immediately evident. The
orthogonal component y clearly minimizes
the function:



               J1 =  min || x – z ||                        (10)
over the set of vectors z in M  as illustrated in
the proof of this theorem.  Thus  if the goal is
optimality (in the sense of minimum
distance), then the orthogonal projection
provides a viable solution.  Next,  this concept
is described in terms of the well-known
Kalman filter and the principle of orthogonal
projection.
2.2 An Example from Estimation Theory
(Kalman Filter):

The well-known Kalman filter was
derived using the concept of orthogonal
projection [7,9,10].  For brevity, only the
basic details are presented here.  Let  x̂
denote the estimate of the state vector x as the
solution of the optimal linear filtering
problem. The error is  ˆ    x x x= −% .  Using the
expectation operator notation, the optimal
estimator at time t1,  provided by
measurements z(t) up to time t,  satisfies the
following two important properties:
(a) E{ x̂  ( t1 | t) } = E{ x(t1) }
(b) min  E{ || x%  (t1|t) ||2 }B  is achieved.
The matrix B is a positive definite matrix.
The orthogonal projection lemma relates to
the above conditions as follows:
Orthogonal Projection Lemma for the
Optimal Linear Estimator
The optimal estimator satisfying conditions
(a,b) above also satisfies the following
orthogonality condition [7,9,10]:
       E { ( x% (t1|t)) (z(t1)) } =  0                    (11)
Remark:  The Optimal Linear Estimator can
also be derived from Theorem 2 [10]:
Theorem 2:
A necessary and sufficient condition for the
linear estimator x̂   to be the least squares
(minimum variance) estimate is that
               E{ x̂ (t1|t)}=E{x(t1)}                    (12)
           E { ( x% (t1|t)) (z(t1)) } = 0                 (13)
In other words, if the estimator is unbiased
(12) and orthogonal (13) to the measurement
set, this is sufficient to minimize the least
squares deviations.  Hence orthogonality,
linearity, and being unbiased are sufficient to

guarantee optimality.  We represent this
concept in Figure 1 which portrays the error
signal ( x% (t1|t) ), the measurement vector
z(t1), and their orthogonal relationship. There
is an interesting geometric interpretation in
Figure 1 which elucidates the concept
considered in this paper.

Figure 1 - Orthogonality Relationship between  z(t) and

z(t) = Measurement Vector

x(t)

A

ˆ    x x x= −%

x%

Geometric Interpretation of  Figure 1:
    In Figure 1, one can view optimality in
terms of a distance measure. Starting at point
A as a center, a radius is drawn with length
x% (t1|t) as indicated by the arc. It has been
known since the time of early Greece that the
shortest distance from point A to the
measurement vector z(t) (line) occurs if the
radius is perpendicular to z(t).  Hence from a
geometric perspective, the orthogonal
projection is the minimum distance from a
point to a line and the relationship between
optimality and orthogonality is easily
understood.

The next example is gleaned from
information theory and insight is gained on
how to relate this prior work on estimation
theory to the information theory methods.

2.3 An Example from Information Theory
    The approach here will be to synthesize a
very complete model of an information
channel to account for an assortment of
possible losses and gains of information
through a variety of processes [11].  The
definition of the information I(x ; y) given by



an observed event y about a hypothesis x can
be specified in a probability sense as follows:

2
( | )

(  ;  )   log  
( )

p x y
I x y

p x
=   (bits)              (14)

The input set of x’s is defined as the discrete
and finite set X, and the output set of y’s,
correspondingly, is defined as Y.  In figure 2,
a flow graph (the information channel is
inside the dashed box) is constructed with the
following variables defined, accordingly:

Figure 2 - The Flow of Information Through A Channel
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H(x)  = Input information in the set X (the
information content of the set X).
H(y) = Output information in the set Y (the
information content of the set Y).
H(y|x) = The noise added to the information
channel (spurious information).
H(x|y) = The equivocation (entropy) which is
the information about the input set X that
might have been transmitted but was not.
T(x,y) = The transmitted information.
    Some other interpretations of these key
quantities can be stated. For example, H(x) is
the input information provided in the source
and H(y) is the output information received.
The equivocation can be viewed as the
average information still needed to specify an
x exactly after the evidence y has been taken
into account. The term average or expected
value of information is derived from the
fundamental definition of H(z) which is in the
form of an expected value operation on
information specified via:

  2
1

( )   ( ) log  
( )i

i i

H z p z
p z∑@   (bits)     (15)

Figure 2 displays the following equation
representations of these different types of
information measures:

( ) ( | ) ( , ) ( ) ( | )H x H x y T x y H y H y x− = = −   (16)
From figure 2, for a given information
channel, the input information H(x) and the
spurious information H(y|x) are generally
fixed and specified. The best the designer can
hope to accomplish is to reduce the
uncertainty (H(x|y) = entropy or equivocation)
by the choice of some design parameter or
procedure. Two productive results occur if
H(x|y) is reduced:

(a) The transmitted information T(x,y) is
increased.

(b) The received or output information
H(y) increases.

Hence reducing entropy or uncertainty, by
any means possible, can only help to improve
the quality of the decision-making or learning.
For an autonomous or intelligent system, this
can surely expand one dimension of
intelligence by the means in which a decision
is made. It will be shown in the sequel that the
orthogonal procedure can also be viewed as
an entropy reduction procedure.
    To illustrate how decision-making can be
realized from only an orthogonal approach, an
example from pattern recognition is now
introduced. Two approaches will be utilized
to solve this problem. The first approach will
be the construction of an orthogonal,
hyperplane methodology.  The second line of
attack will introduce the procedure termed
“majority-voting”.

2.4 An Example from Pattern Recognition
(Orthogonal Method)
    A system is described which provides a
means for improving the quality of
information derived from a decision-making
process by weighing certain multiple and
alternative information channels.  The method
is applied to data estimating the cognitive



workload state of a human operator dealing
with a complex task using noninvasive
sources of physiological data as a basis.
    In recent years, as the proliferation of data
becomes more and more persuasive, the
challenge increases in designing systems that
can process information in an innovative and
efficient manner.  The first system discussed
in this paper has as a goal the improvement of
the quality of information for making a
decision from alternative (and multiple)
sources of data. The potential data sources are
first rank ordered in terms of their efficacy for
making a binary decision. The next step is to
combine two alternative data sources in a
productive manner so as to glean out the
highest quality information.  By induction, the
process then generalizes to multiple,
alternative, data sources with the end goal of
continuing to improve the decision-making
process through the intelligent use of data. To
illustrate the applicability of the approach,
data relevant to the estimation of the state of
an operator (human controlling an automated
system) through the selection of certain, key,
physiological signals provides a platform to
test the efficacy of such a methodology [12].
    As humans deal with highly automated and
complex systems, it is sometimes desired to
obtain estimates of elevated demands of
cognitive workload as manifested by
physiological signals that may be gleaned in a
noninvasive manner. Once an identification of
the operator in a high workload state is
verified, the automation level of the system
may be adjusted to maintain effectiveness of
the mission [2,11]. Figure 3 illustrates the
operator in a human-machine interaction
system with physiological data being
monitored. Figure 4 depicts the basis of the
decision rule (low or high workload state) that
will be investigated in this study with the goal
of improving decision-making by using
multiple channels of data in a productive
sense. In Figure 4, the data displayed may be
from as many as 43 possible physiological

Figure 3- Physiological Signals to Detect Workload
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Figure 4- The Basis for The Decision Rule 
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2.5 The Statistical Decision Rule
    Figure 5 portrays the ROC (relative
operating characteristic) curve for data
representative of figures 4 and 6.

P(false alarm) = β

Figure 5 – The ROC Curve
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    The ROC  was originally derived in signal
detection theory, but has found widespread
use in other areas.  The plot in Figure 5  has



Interbeat Data
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Figure 6 – Interbeat Heart Rate Data

as the dependent variable the term 1-α versus
the independent variable β  as derived from
Figure 4. This may be viewed as the plot of
the probability of a hit versus the probability
of a false alarm in a binary decision rule
[2,11,13] and can be shown to be the
depiction of the two cumulative distribution
functions of the densities of Figure 4.  In an
ideal decision-making process, the ROC
curves moves upward to the left most
diagonal (a measure of uncertainty, cf. Figure
5). Performance measures of such systems
may be the minimum diagonal distance
proximal to the upper left diagonal or the area
under the ROC curve. An application to test
the algorithm presented here is next
described.

2.6 Testing the State of the Human
      Operator
     From [12] there exist 43 possible data
channels including physiological variables
such as interbreath, interheart beat, and
various electrode signals obtained as an
operator performs a difficult task. Figure 6
illustrates the interbeat data for the two-
workload conditions (high and low) and
Figure 7 is the resulting cumulative
distribution functions. Figure 8 is the
corresponding ROC curve. Since the ROC
curve is above the diagonal (random guess),
this data variable is useful for predicting the
state of the operator.  The challenging
problem discussed here is how to use two or
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Figure 7 – CDFs for Figure 6 Data
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more alternative data channels to improve
upon the decision-making capability. After
this procedure is illustrated for two channels,
by induction, the process then generalizes to n
channels.
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2.7 The Orthogonal Algorithm
    The algorithm to develop the decision rule
has two steps:
Step 1: Rank order all data variables using the
ROC curve.
Step 2: Select two or more data variables that
yield a productive ROC curve, and then
develop cross plots of the distributions. The
decision rule is the hyperplane that separates
the two distributions in an appropriate
manner. Appropriate is based on an
orthogonal projection between the centroids
of the candidate distributions [14].

2.8 Implementation
    Step 1 was implemented by plotting 43
ROC curves for all the data variables of



interest. The efficacy (objective metric) was
the minimum distance along the diagonal
from the upper left corner to the ROC curve
(cf. Figure 5). Thus all 43 data channels could
be rank ordered, according to their ability to
improve on the binary decision rule.
Step 2 was implemented by developing cross
plots of two candidate distributions. The
centroids were then calculated for each
distribution. A line was drawn between the
centroids. A perpendicular line was then
constructed to separate the two distributions
at a point determined by a ratio involving the
distance of the respective ROC curves from
their upper left corner on the diagonal in
Figure 5.  This decision rule then generalizes
to a hyperplane as more variables are
included. The overall decision rule (cf.
Figures 9 and 10, for example) is that the

Figure 9 – Separating The Workload Data

1 3 13.5 14 14.5
680

700

720

740

760

780

800

820

13
14

15
16

17
18

-200

0

200

400

600

800
680

700

720

740

760

780

800

820

Figure 10 – Construction of A Decision Hyperplane
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selection is made of the high workload
condition if the points fall below the
hyperplane. Above the hyperplane is
considered the low workload condition. The
results then generalize to multiple channels of
data and the decision rule is a vector based on
ROC curves and hyperplane surfaces as
shown in Figure 10 for any number of data
channels. Also this method can be viewed as a
means of reducing entropy by expanding the
dimension set. In multiple dimensions, the
entropy (lost information) is constantly
reduced when the hyperplane includes more
discriminate points in an n dimensional space.

2.9 An Example from Pattern Recognition
(Majority-Voting Procedure)
    It has been shown mathematically [6] that a
highly simple (scalar) algorithm can perform
as well or better than an orthogonal scheme
just described. Figure 11 displays a bank of
classifiers (n is assumed to be an odd
number). Each classifier makes an individual

Data

Classifier 1 Decision d1
Scalar

Decision

Classifier 2 Decision d2

Classifier n Decision dn

……
…

Figure 11 – Majority-Voting – A Scalar Decision-Making Process

decision on the binary decision rule. The
overall decision is simply the majority vote of
these n classifiers. The advantages and
disadvantages of this procedure are briefly
described:



2.10 Advantages of the Majority-Voting
        Procedure
    Obviously, simplicity and the scalar nature
of the process described in figure 11 is
attractive, since computationally this process
is much easier. Simplicity usually includes the
attributes of reliability and robustness.

2.11 Disadvantages of the Majority-Voting
        Procedure

The disadvantage of the configuration
in figure 11 occurs if the number of classifiers
is small or does not fully represent the
probability space concerning the important
variables required in making a decision.  If
the number of classifiers n → ∞, then it is
obvious that the appropriate variables will be
considered.  This is analogous to the problem
of “persistence excitation” in adaptive control
theory.  If, however,  the system does not
fully exploit the entire information set, then
erroneous results may occur.  Hence incorrect
outcomes will occur if n is sufficiently small
or does not include relevant information for
making a key decision. We study the results
with the application discussed previously.

III. Application to Experimental Data
    Using data from [12] workload estimation
of the human operator, the orthogonal method
will be compared to a majority-voting
scheme.

3.1 Comparison of the Orthogonal
      Approach to Majority-Voting
    The comparison between these two sets of
classifiers was conducted by studying three
classifiers with a different data set as input to
each classifier. This system was tested in an
orthogonal sense as well as with the majority-
voting scheme. The three selected
physiological data sets from the 43 possible
included: (1) interbeat (heart rate data), (2)
electrode zero- alpha (the alpha brain wave
from an electrode denoted as zero), and (3)
electrode one- delta (the delta brain wave

from the electrode denoted as number 1).  It is
noted that there were three nonelectrode data
channels (interbeat, interbreath, and eyeblink)
and 8 electrodes with 5 channels each of
brain-wave data recorded. This gave a total of
43 channels of data possible to detect whether
the operator was in a state of high or low
workload. As these data were collected, the
operator performed tasks, which were known
to elicit a state of high or low workload by the
task’s relative complexity and subjective
comments collected.
    The ROC curves of  figure 5 were
determined for all three data sets. The
variable σ will be used to measure the
distance from the diagonal to the upper left
hand corner of the ROC curve along the
vertical axis. Note 0.5 > σ > 0 because a
random guess line is described by the
diagonal that goes from the (0,0) point to the
(1, 1) in figure 5 and the efficacy of the
estimator is the proximity of the ROC curve
intersecting the diagonal going from (0,1) to
(1,0).  Four tests were performed. The
classifiers were rank ordered by their σ values
(the smaller σ is a better estimator). The
orthogonal method and the majority voting
method were both utilized to classify 210
points (106 in the high workload case and 104
in the low workload case). Table 1 shows the
efficacy of the classifiers, alone. It lists the
data utilized and the σ value for each
classifier.

Table1–Efficacy of A Classifier Acting Alone

Classifier
Number

Data Variable
Utilized

σ from the
ROC Curve

Classifier - 1 Interbeat
(heartrate) data

0.15

Classifier - 2 Electrode 1-
delta wave

0.27

Classifier - 3 Electrode – 0 –
alpha wave

0.32



Thus as the classifier number increases, its
ability to perform accurate decision-making
degrades accordingly. The performance of
these classifiers is now evaluated in both an
orthogonal sense as well as in a majority-
voting scheme.  In Table 2, the errors e1

represent the data points that were high
workload but were wrongly classified as low
workload.  The errors e2 represent the data
points that were low workload but were
wrongly classified as high workload.  The
errors e3 were the errors the majority voting
scheme wrongly classified in either case. The
overall performance results are displayed in
Table 2. For two classifiers, the majority-
voting scheme was considered inaccurate if
both classifiers did not reach the same
conclusion.

 Table 2 – Performance of The
Orthogonal Method versus Majority-Voting

Tests and
Classifiers

e1

errors
e2 errors e3 errors

Test 1: C1 + C3 12 24 30
Test 2: C1 + C2 14 21 28
Test 3: C2 + C3 8 0 8
Test 4:
C1+C2+C3

4 0 6

IV. Discussion of Results
     From Table 2, some interesting results
appear.  When two classifiers are considered,
the majority-voting scheme performs as well
or better than the orthogonal method. As we
go to higher dimensions, however, (Test 4),
the combined effect of e1 and e2 errors is less
for the orthogonal method as compared to the
majority scheme. Also the Test 3 results are
interesting because this is a poor estimator,
yet the orthogonal projection scheme seems to
include the relevant aspects of the decision-
making space. The benefits of increasing the
dimension of the orthogonal classifier seem to
outweigh the benefits derived from the

majority-voting scheme. As n gets larger, it
appears this effect is more pronounced.
Studies on ongoing to further investigate the
dimensionality effect both within and across
these candidate classifiers.
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